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EXCITATION OF PARAMETRIC OSCILLATIONS WITH RANDOM EXTERNAL SIGNALS

Currently, the main technical means of communication systems are receiving and transmitting radio devices, which in their structure contain various
converters and amplifiers operating in nonlinear modes. In the transmission paths themselves, interference, delays, mismatches and parametric effects
can occur, which leads to the appearance of small amplitude signals in the information channels. These factors have a significant impact on the
characteristics of the telecommunications system.

Theoretical investigations of the influence of random signals (oscillations) on the operating modes of a nonlinear oscillatory system is an
urgent task and aimed at expanding the possibilities of its use. In general, the analysis of random excitation of oscillations in nonlinear parametric
systems is of interest for many branches of science and technology.

The goal of the work is to research the factors that influence the possibility of excitation of oscillations in nonlinear systems and possible
modes of their operation in the presence of small in amplitude random signals.

The analysis of parametric systems with significant nonlinearity in the presence of random external signals. The most important cases of
excitation of the inductive nonlinear system are considered. The relations allowing to control the parameters of the regenerate signal depending on the
mode of excitation are got.

It is shown that in the case of a quasiharmonic input signal, the noise reduces the amplitude of the useful output signal. In the case of a
broadband input signal (modeled by white noise), a limited response value is possible only for nonzero losses (the nonlinearity of the system is not
enough for this).
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O. M. THTAPEHKO, O. I. 10T AHKO
3BYJI)KEHHSI IAPAMETPUYHUX KOJIMBAHb ITPU BUIIAIKOBHX 30BHIIIHIX CUTHAJIAX

TeopeTnyHi JOCITIKEHHS BIUIMBY BUMAAKOBUX CUTHANIB (KOJTMBAHb) HA PEKUMHU POOOTH HETIHIHHOT KOJMBAIbHOI CHCTEMH € aKTyalbHUM 3aBIAHHIM
i CIIpsIMOBaHI Ha PO3LIMPEHHS MOXIMBOCTEH Ii 3acTocyBaHHs. B3araii, aHani3 BHIIaAKOBOro 30Y/DKCHHs KOJMBAaHb B HEMIHIHHUX MapaMeTPHYHUX
CHUCTEMaXx CTaHOBHTH IHTEPEC [UIsl 0araTbox raixy3ei HayKu i TeXHIKH.

B po6oti npoBeneHo aHani3 nmapaMeTPUYHUX CHCTEM 3 CYTTEBOIO HEiHIHHICTIO MPU HAasBHOCTI BHITAJKOBHX 30BHINIHIX BIUIMBIB. Po3ristHyTi
HaOIIbI BaXkIMBI BUMAAKKU 30y/KCHHS IHIYKTHBHOI HeNiHiIMHOI cucteMu. OTpuMaHi CHIiBBiIHONICHHS, SIKi HaJalOTh MOXJIMBICTH KEpyBaTH
[apaMeTpaMH MEepeTBOPEHOr0 CHTHAITY B 3QJIC)KHOCTI Bijl peXKUMY 30y/KCHHSI.

KaiouoBi cioBa: HemiHiliHAa cHCTeMa, MapaMETPUYHI KOIHMBaHHS, 30YyMIKEHHS, BUMAJKOBHH CHTHAN, MHIYKTUBHBIA KOHTYp, TEOPETHUHI
JIOCITI JDKEHHS.

A. M. THTAPEHKO, O. H. IIOJATAHKO
BO3BYKJIEHUE TAPAMETPUUYECKHX KOJIEBAHUM TIPU CJIYYAWHBIX BHEIIHUX
CUTHAJIAX

TeopeTnueckue HCCIENOBAHUS BIHMSHUS CIydalHBIX CHTHAIOB (KoeOaHW) Ha PeXMMBI PaOOTHl HEIMHEHHOH KoJeOaTelnbHOH CHCTEMBI SIBILSIETCS
aKTyaJbHOW 3ajadell W HaNpaBJICHbl HAa PAaCIIMpEHHE BO3MOMKHOCTEH ee NpuMeHeHms. BooOmie, aHamms ciydaifHoro Bo3OyxIeHMsS KonecOaHMH B
HETMHEIHBIX TapaMeTPUYECKHX CUCTEeMAaX MpeCTaBisieT MHTEPEC sl MHOTUX OTpacieil HayKd U TEXHHKU.

B paGote mpoBezieH aHaIN3 IMapaMeTPHYECKHX CHCTEM C CYIIECTBEHHOH HEIMHEHHOCTHIO MPH HAJIMYUH CIIyYaiHBIX BHEIIHUX BO3ICHCTBUIA.
PaccmoTpeHs! Hanboliee BaXKHBIE CITydad BO30YXKICHUS MHIYKTUBHOW HEJIMHEHHOH CHCTEMBI IloTydeHBI COOTHOLIEHHMS, I103BOJIIOIINE YIIPABISTH
napaMeTpaMH IpeoOpPa30BaHHOIO CUTHANA B 3aBUCHMOCTH OT PEXKUMA BO30YXKICHHS.

KiioueBble ci10Ba: HelMWHEHHas CHCTEMa, IapaMeTpUUYECKHe KoieOaHWs, BO30OYXICHHE, CIydalHBIH CHTHAJ, WHIYKTUBHBIM KOHTYD,
TEOPETHYECKHE UCCIIEIOBAHMS.

Introduction

The excitation of parametric oscillations with
random effects occurs in real electronic systems, in solids,
mechanical systems, etc. The parametric converters
themselves solve the problem of transforming oscillations
in the broad sense of the word (generating, amplifying,
measuring, dividing and multiplying, coding signals) with
the necessary accuracy in a certain range of variation of
their parameters. The error in the conversion depends on
the amplitudes of the external signals, their time,
frequency and other characteristics. In the general case
inaccuracies are a random function of the distribution
parameters describing the input signal. The characteristics
of this function are usually specified and are a criterion in
the design of radio engineering devices and
telecommunications facilities.

Investigations of the influence of random signals
(oscillations) on the operating modes of a nonlinear
system are an urgent task and aimed at expanding its
capabilities. The research of random excitation of
oscillations in nonlinear systems is of interest for many
branches of science and technology.

The goal of the work is to research the factors that
influence the possibility of excitation of oscillations in
nonlinear systems and possible modes of their operation in
the presence of small in amplitude random signals.

Formulation of the problem

As a model for the research, we will consider an
inductive parametric generator based on a resonant circuit
with a nonlinear reactive element. It is important that
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research methods and the principles of operation of such
devices can be used in researching other types of
nonlinear systems [1].

Usually parametric converters are calculated for
stationary modes and transformations of deterministic
signals. The research of paths with an essential
nonlinearity and random external influence in the
theoretical plan is a very difficult task now, for the
solution of which there are no common methods and they
have not been sufficiently researched.

Main part

The inductive parametric generator, based on two
magnetic cores with pumping (excitation) W1 windings,
resonant W2 and losses R1, R2, respectively in the pump
circuit and resonant as well as capacitance in the
resonance circuit C, with symmetrical external action and

approximation of the nonlinear  magnetization
characteristics
H=f(B) )
as: H =oshPB, )
where: a, B — approximation coefficients;

B, H - instantancous values of magnetic
induction and magnetic field strength in the core,
are described by the following equations [2]:

5c+ylsh§ch§:Um COST; 3)
j}+y2é%(ch§sh§)+yzch§sh% = 1 (0. (4)
t=of; U, = ETUIZO;

U,, — amplitude of the pump voltage;

S — cross-sectional area of the core;

[ — length of the midline magnetic field in the core;

® — angular frequency of the pump voltage.
Here, x and y — reduced values of the voltages in the
primary and secondary windings, the values of y; and v;
define the relationship between the contours, and v,
describes the energy losses in the system. The right side in
equation (3) is related to the action of the pump voltage,
varying in harmonic order, the right side in equation (4)
describes the action of an external signal (which can be
random).

It is assumed that y;, y;3 << y,. Then the response of

the system to the signal f{t) is determined by the equation:

. 1d
ymsh% +7, 5%“”5) ~ f(0), ()

following from (4).

At first, we consider the case of a small signal
A1) << 73, which does not go into resonance with
oscillations in the contour. These propositions enable us to
linearize equation (3) with respect to y:

V+1y+7,0 = f(0). (6)

We write the solution of (4) with the aid of the
Green's function G(o,f) of the corresponding
homogeneous equation:

Y1) = [ G(r.0) £ (0)d. %
0

The function G(w,f) is expressed in terms of the linearly
independent solutions Ui(¢), U,(f) of the homogeneous
equation:
U,(0U, (1) -U, ()0, (®)
W)
where  W(t) — Wronskian determinant [3].
Expression (7) is convenient when analyzing a
random effect on the system. It allows us to express all the
characteristics of the response y(t) in terms of the
characteristics of the random signal f{t). For example, the
correlation function <y(#,) y(z,)>, which is of interest for
applications, establishes a connection in the steady-state
mode between the input and output signals in the time
interval t [4]:

G(t,t) = ®)

URs)

< y(t)(t) >= J.IG(tl’Tl)G(ZZ>T2) <f(r,)>drdr, . (9)
00

Consider a lossless system (y, = 0) in the absence of
signals (f(t) = 0) at the initial time. Then the Green's
function corresponding to it

G(x,t) =sin \/% (x—1). (10)

For example, consider the response of a system with
Green's function (10) to compensation with random
independent amplitudes 4, and deterministic phases vy,

f(t)=> A4, cos(not+wy,). (11)

Let us show that even such a rough characteristic of
the response y(t), as the time-averaged value of the
variance <y*(t)>, contains information about the phases
v, while the same characteristic for f{t) does not contain
this information. Carrying out the calculation by formula
(9) using expressions (10) and (11), we obtain:

. N
fim [dr < y(@)y(@) >= lim [ D, 0di = (12)

1 1 1 1
==Y <4 >( + -2 cos2y,).
4% (n(;)—\/Z)2 (no)—\/Z)z n’o’b
Let us investigate the resonant excitation of the
circuit. It follows from equation (6) that the natural

frequency of the system is o, = ]fy—; . If 0y is close to an

integer k, then one of the harmonics f{t) causes a
resonance in the circuit. We assume that the main
mechanism limiting the amplitude of the oscillations is the
nonlinearity of the term with the coefficient y; in the
expression (3) (that is, the losses proportional to y, are
sufficiently small). Without loss of generality, we can also
assume that the resonance is due to the lowest harmonic in
the perturbation f{t). Neglecting the losses and taking into
account the first two terms in the expansions for the

function sh% , and also leaving only the resonance term

in the signal f{1), we obtain:

j}+hy+%y3 = Acos(T+ ).

2 (13)
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These approximations are justified if the signal
amplitude is 4 < 1 (for 4 = 0 equation (13) is called the
Duffing's equation). We seek the solution of (13) in the
form of a Fourier series:

Y1) =3B, cosk(t+y) .

Substituting relation (14) into expression (13) gives:

(14)

(& _ KB, cos(t+ ) + -2 (3B, cosk(t + y))® =
r 2 48 %
= Acos(t+y). (15)
We believe that % —1/<1. Therefore, the harmonic

B, >> B, for all n > 1. Indeed, it follows from (15) that
B, ~A forn>1, and B, ~ AP >>4. Leaving only the
terms proportional to cos (t + y) in expression (15), we
obtain:

V3 Y3 p3
—=-D)B+—=B =A. 16
(2 )B, o1l (16)

Equation (13) has a solution for the case of exact
resonance (for y; = 2):

1
(1) =2(4A4)3 cos(t+ ). 17)

The solution (17) is valid for any realization of the
random variables 4 and v, that is, the response properties
of y(t) as a random variable are completely determined by
those for 4 and y. All other harmonics in f{t) cause a
small perturbation (moderately small A4) of the solution
(17).

Define the mathematical expectation < y(t)> of the
solution (17), assuming 4 to be a random variable
distributed according to the normal law with parameters
Apand o . It is obvious that the mathematical expectation:

< y(r) >= Yo COS(T +y), (18)

where:

Ag_[[(l——z)3+(l+Zz)3]€ 2dz
(19)

1e. for a

J_

(o — standard deviation).

A direct calculation shows that % <0,
oc

given 4, the noise (described by the dispersion D=c")
decreases the amplitude of the useful signal y,, which is a
manifestation of the nonlinearity of the considered system.

The example considered above demonstrated the
effect of a quasiharmonic signal on a nonlinear system.
The model of a random effective force with a wide
spectrum is a Gaussian (normal) random and c-correlated
process, where the random variable f{t) at each instant 7 is

distributed according to a Gaussian law, and the
correlation function has the form [5]:
< f(t)f(t,)>=2Do(t, —1,). (20)

Taking into account the fact that y; >> y,, we leave
in equation (6) linear with respect to the derivative y , the

response and the cubic terms along the response y the
terms

J+2y+2y

2 48 2 2V=I®.

ey

We introduce the canonical variables p =y and y in

Then, into account the

H = p_2 e [ Y3 V4,
2 4 4. 48
equation (21) can be written in the form of a Hamiltonian
system of equations [6, 7]:
. dH . _dH y2
V=g . p=f(0.
The probability distribution functlon P for p(¢) and

y(£) can be found from the Einstein-Fokker equation [7]:

2
dP dPdi_dPdH v, d P
dt dP dy dy dP dP

The time-independent solution of equation (23) has
the form:

expression (19). taking

Hamiltonian function

(22)

(23)

N2y
F,, =conste*’ =
_ Y2 P’ Y3 2 Y3 4
= constexpy——[—+—=y +—— . (24
p{ 2D[2 4y 4><48y ]} 24)

Here const is found from the normalization condition for
the probability density. The expression (24) gives
complete information about the statistical properties of
equation (21). Thus, it is seen from expression (24) that
the derivative y and the response y are statistically

independent, since P(p,y) is factorized:
P(p,y) = P, (p,y) & P, (p,y). The magnitude of the
derivative y has a normal distribution, and of the

response y — has no:

4
P(y)~ op { Y—Df[ﬁ ¥ +V3—y]}. (25)

4 4x48
It follows from (25) that <y> =0, <y*> # 0, i.e. the system
performs random "oscillations" near the origin. Their
amplitude increases with increasing force (proportional

JD ) and a decrease in friction (proportional to v,).

Thus, we considered the effect of a random signal
without taking into account the effect of the pump on the
resonant circuit. In the nonlinear mode, the characteristics
of the random function-response differ substantially from
the characteristics of the random function-signal. It is
shown that in the case of a quasiharmonic input signal, the
noise reduces the amplitude of the useful output signal. In
the case of a broadband input signal (modeled by white
noise), a limited response value is possible only for
nonzero friction — the nonlinearity of the system is not
enough for this. The resulting function P(y, y) — (24)

describes the response of the system to white noise.

Let us investigate the transformation of a random
signal by a parametrically excited system. The most
interesting case is when the frequency of natural

Y3

oscillations is ®’ —? of the order of unity; then the

condition y; >> v, v, implies:

YY) <<L (26)
Neglecting the deviation of the response y from zero in
equation (3), which is equivalent to neglecting the inverse
action of the excited contour on the pump source, and
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. X . .
expanding ShE under the restriction by the cubic term of

the series, we obtain:

+ Ly U, oosr—iy1
2 48

27)
If the last term on the right-hand side of expression (27) is
not taken into account, then the last equation is easily
solved:

X, = 4Um(sint+%008 T) zUm(sinr—i-%COS‘C) ;(28a)

Xy =—
Yl +4
The passage to the last expression in (28b) is made
using the inequality (26). We find the correction to (28b)
due to the nonlinearity of equation (27). In the first

approximation in y; we have:

x= xo(r) +x(7),
1

X = _&Yl

——U, (cost —%smr) ~-U, (cost —Esmr) .(28b)

— (cos 3t+3cos 1),

or X, :LUfn sinr+%Uﬁz sin3t. (29)

64
Comparison of expressions (28) and (29) shows that

LYy, (30)
X,| 64

Thus, if
Un<1, (1)

then, according to approximation (30), the ratio

Xo

addition to the small parameter y,, contains one more

2
small parameter (Ug”’j . In what follows, condition (31)

is assumed to be satisfied, and the solution x(t) is the same
as xo:

x, =-U, cos(t+@,); LN % (32)

¢, = arctg W
Now we simplify expression (4)

L4 s hych D+ y2y+;y2xxy 0. (33)

In expression (33), the first term of the expansion

sh% and the first two terms in the expansion chg are

taken into account. Taking into account expressions (32)
and (33), we obtain:

.1 y3Um
+ —
y {2Y3 16
|
TSV S0
It is convenient to rewrite equation (34) by
introducing the following designations

2 L2

Yive Yoz 2 0 Ts
16,/(2) +(=
\/(32) (16)

2
cos’(T+@,)+ yzllg'” sin(2t + 2@1)} v+

(34

©=q, t+arctg

1 @2 1
2oty m-U, Un (35)
272 2V3 [ j (8y3 16

In the new designations we obtain:
P+ 200+ (1+mcos(2t+ @)y = £ (7). (36)
The frequency ,, as can be seen from equation (36), in
the dimensionless variables is ®, = 2. The pump amplitude
m, as follows from expressions (31) and (35), is small:
m<<1l. (37)
The solution of equation (36) can be written in terms
of the response function k(w,t) by the periodic force
St) ~e™".
The presence of a small parameter m makes it
possible to develop an approximate calculation procedure
for k(w,t). Using the expansion

k(o,7) =Yk, (0)e" (38)
when solving equation
P+ 200 + @y, (1 + mcos(21 + @)y = " (39)

we obtain the following system of coupled equations for
the coefficients k,(®) of the Fourier expansion (38):

[wp — (0—2n)* + 2ia(®—2n)]k, (®) + 1% 0 [e ™k, ,(®)] =
= 6"0 > (40)
where: n=0; +1; £2;...;
0,0 — Koneker symbol.
Let the condition:
2
[(@+2n+ 0,0 2n+0,)| >> ”‘;0 . on=+1,.. (41)

(In the case when condition (41) is violated, they speak of
resonance at the combination frequency). Then, as follows

n_ —n

from expression (40), the ratio ~m<<1

n-1 —n+1
(here n > 1), and the system (40) can be solved by the
method of successive approximations.

We write out the first three equations of system (40),
which allow us to determine the coefficients ky, ki, k.1 up
to terms proportional to m.

n=0;

(0f — @ + 2icuw )k, (w) +

2
Oy i i
’"2 0 (e "k, () + €k, () = 1; (42)
n=1;

(0 —(@—2)* +2io(®—2))k, (o))+ o (ko (@) + "k, () = 0;

n=-1;
( —(0+2)* +2ia(o+ 2)k; (w) + % 0 (e”“’k () +€“k, (@) =0.

Thus, in this paper, for an inductive nonlinear
parametric contour with random external action, equations
were obtained analytically that allow us to determine the
coefficients ky, k1, k.; in the Fourier expansion up to terms
proportional to the small parameter m.

Conclusion
1. The effect of a random signal on a nonlinear
system is considered and it is shown that in the nonlinear
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mode of operation the characteristics of the random
function-response  differ  substantially from the
characteristics of the random signal.

2. It is shown that in the case of a quasiharmonic
input signal, the noise reduces the amplitude of the useful
output signal. In the case of a broadband input signal
(modeled by white noise), a limited response value is
possible only for nonzero losses (the nonlinearity of the
system is not enough for this).
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